
Aeronef (​github.com/mikedillender/Aeronef​)
Video documentation can be found on the “Mike Dillender” YouTube Channel

This has been my most creative and long-running endeavor, currently sitting at ​32,477 lines

of code. As such, it would be nearly impossible for me to describe the creation of it within a reasonable
word-count. Instead, I will explain some of the interesting and complex features/algorithms that are
incorporated into it.

Notable Algorithms:
● Random World Generation

○ The most complex algorithm is the world
generation. Every time a player starts a new
game, a new world is procedurally
generated, one of these maps is shown to
the right. This process alone is around
8,000 lines and takes most computers
around 45 seconds to complete.

○ Noise Generation
(​github.com/mikedillender
/MiscApplets/tree/noisegencontroller​)
■ I independently developed a process for

noise-generation using an array of
sinusoidal vector functions. This is
demonstrated by the unique shapes of
the islands in the above images of map
generation.

○ Cave Generation
■ Caves are created like worms, tracking

their path and removing tiles they pass
through.

■ This algorithm was adapted to create
the world tree in the bottom left of the
map.

○ Island Generation
■ Uses noise-generation to create a unique

shape, then runs a recursive decay
algorithm on the bottom to make it seem
as if the islands have eroded and fallen
off. After this, caves are generated all
throughout the island.

■ After erosion and cave-gen, grass and
trees (or sand and cactus) are placed on
top of each island, making them look
more natural and pleasant.

■ Finally, each island is placed into the
most empty region of the map.

■ Each map consists of around 50 islands of varying sizes.
○ Pre-Built Structures

■ Structures can be drawn in ​Photoshop​ and saved directly as a .png, I have written a script
that allows the game to convert this .png data into a structure, and can be placed into the
world. This is used for the village at the base of the world-tree.

● Enemy Pathing
○ The enemies use an adaptive pathing system to follow the player
○ They can not only navigate through mazes (finding the fastest possible route), but jump

over pitfalls if they are in the way.
● Lighting

○ The lighting system is very efficient,
and unlike many similar games, is
extremely smooth.

○ The system allows for updates to the
lighting every frame, making entity
lights possible.

○ Of course, blocks and tiles block light.
○ Certain tiles in the open-air act as

light-sources along with torches, but
their brightness changes based on the
time (i.e. it is dark during the night).

● Fluid Dynamics
○ Water flows from tile to tile to find its

level.
○ Obviously, the fluids cannot flow through blocks.

● Animations
○ All entities are animated to some degree
○ All sprites can have up to two degrees of rotation, which is rather difficult to achieve.

● Airships
○ Players can not only create their homes

from materials they gather but can turn
those homes into airships.

○ Players can control the amount of air in
the balloons, controlling their upward lift.

○ If not powered by propellers, the ship is
controlled by the wind (which can be
determined based on the movement of the
clouds in the background)

● Steam Power
○ This is highly integrated into the

aforementioned airships. Taking heavy
inspiration from the steampunk genre and gilded age technology, the player can create a
steam boiler and use it to power an engine.

○ Steam engines can rotate gears, which in turn, can rotate propellers.
■ These propellers, when placed on airships and used with valves, can turn the

player-built ships into thermal airships, allowing for full control of its motion.
● Efficient Tile Rendering

○ World files are 2,520x4,050 tiles (for reference, the player is 1x2 tiles), but it only renders
the tiles that are on screen, and visible.

○ If the tile is too dark, it will not render, making it much more efficient.
● Automatic World Saving / Loading

○ Whenever the player changes the environment, the change is seamlessly saved to the
hard-drive, so no matter when the user exits the game, their data is saved.

○ It also independently saves the player’s location and inventory data, and minimap data.
○ Along with player change saving, the biggest save file is the full map.

■ Most world files are 2,520x4,050 tiles, but large worlds are 7,560x12,150 tiles.
■ Each tile consists of five layers: block, wall, complex block, pipe, and liquid.
■ Uncompressed, these files are around half a gigabyte, but with my compression

algorithm, they are saved at a mere 17 megabytes.

