Aeronef (github.com/mikedillender/Aeronef)

Video documentation can be found on the “Mike Dillender” YouTube Channel

| E

CLI-L O L]

This has been my most creative and long-running endeavor, currently sitting at 32,477 lines
of code. As such, it would be nearly impossible for me to describe the creation of it within a reasonable
word-count. Instead, I will explain some of the interesting and complex features/algorithms that are
incorporated into it.

Notable Algorithms:
e Random World Generation

o The most complex algorithm is the world
generation. Every time a player starts a new
game, a new world is procedurally
generated, one of these maps is shown to
the right. This process alone is around
8,000 lines and takes most computers
around 45 seconds to complete.

o Noise Generation
(github.com/mikedillender
/MiscApplets/tree/noisegencontroller)

m [independently developed a process for
noise-generation using an array of
sinusoidal vector functions. This is
demonstrated by the unique shapes of
the islands in the above images of map
generation.

o Cave Generation
m Caves are created like worms, tracking

their path and removing tiles they pass
through.

m This algorithm was adapted to create
the world tree in the bottom left of the
map.

o Island Generation

Uses noise-generation to create a unique
shape, then runs a recursive decay
algorithm on the bottom to make it seem
as if the islands have eroded and fallen
off. After this, caves are generated all
throughout the island.

After erosion and cave-gen, grass and
trees (or sand and cactus) are placed on
top of each island, making them look
more natural and pleasant.

Finally, each island is placed into the
most empty region of the map.

e -
L K=K NCN N X NN | ’*
gt

Each map consists of around 50 islands of varying sizes.

o Pre-Built Structures
Structures can be drawn in Photoshop and saved directly as a .png, I have written a script

]
that allows the game to convert this .png data into a structure, and can be placed into the
world. This is used for the village at the base of the world-tree.

Enemy Pathing

o The enemies use an adaptive pathing system to follow the player
o They can not only navigate through mazes (finding the fastest possible route), but jump
over pitfalls if they are in the way.

Lighting

o The lighting system is very efficient,
and unlike many similar games, is
extremely smooth.

o The system allows for updates to the
lighting every frame, making entity
lights possible.

Of course, blocks and tiles block light.
Certain tiles in the open-air act as
light-sources along with torches, but
their brightness changes based on the
time (i.e. it is dark during the night).

Fluid Dynamics

o Water flows from tile to tile to find its
level.

o Obviously, the fluids cannot flow through blocks.

Animations

o All entities are animated to some degree

o

All sprites can have up to two degrees of rotation, which is rather difficult to achieve.

e Airships .-

o

e Steam Power

o

Players can not only create their homes =

7EREEGEBE80 '
i SEEEENEEES

ﬁmnnmmn@sﬂwyg@hmﬂnucmrmnl e anes

those homes into airships. ssssensses

Players can control the amount of air in
the balloons, controlling their upward lift.
If not powered by propellers, the ship is
controlled by the wind (which can be
determined based on the movement of the

clouds in the background)

This is highly integrated into the
aforementioned airships. Taking heavy
inspiration from the steampunk genre and gilded age technology, the player can create a
steam boiler and use it to power an engine.
Steam engines can rotate gears, which in turn, can rotate propellers.
m These propellers, when placed on airships and used with valves, can turn the
player-built ships into thermal airships, allowing for full control of its motion.

e Efficient Tile Rendering

o

o

World files are 2,520x4,050 tiles (for reference, the player is 1x2 tiles), but it only renders
the tiles that are on screen, and visible.
If the tile is too dark, it will not render, making it much more efficient.

e Automatic World Saving / Loading

o

Whenever the player changes the environment, the change is seamlessly saved to the
hard-drive, so no matter when the user exits the game, their data is saved.
It also independently saves the player’s location and inventory data, and minimap data.
Along with player change saving, the biggest save file is the full map.
m Most world files are 2,520x4,050 tiles, but large worlds are 7,560x12,150 tiles.
m Each tile consists of five layers: block, wall, complex block, pipe, and liquid.
m Uncompressed, these files are around half a gigabyte, but with my compression
algorithm, they are saved at a mere 17 megabytes.

